Topic: Circular Measure

Measuring angles in radians

“A radian is the angle subtended at the centre of a circle by an arc length whose length is equal to that of the radius of the circle”. This means a radian is the angle formed when the arc length and the radius are the same.

\[
\text{No. of Radians in a circle} = \frac{\text{length of circumference}}{\text{radius}} = \frac{2\pi r}{r} = 2\pi
\]

\[
\therefore 360^\circ = 2\pi \text{ rads} \quad 180^\circ = \pi \text{ rads} \quad 1\text{ rad} = \frac{180}{\pi} \approx 57.3^\circ
\]

Converting angles from Degrees to Radians

1. Convert 45° to radians

\[
45^\circ \times \frac{\pi}{180} = \frac{45\pi}{180} = \frac{\pi}{4}
\]

Leaving your answer in terms of \(\pi\) (exact)

2. Convert 75° to radians

\[
75^\circ \times \frac{\pi}{180} = \frac{75\pi}{180} = 1.308... \approx 1.31
\]

Leaving your answer in 3 sig. fig. (approximated)

Converting angles from Radians to Degrees

1. Convert \(\frac{2\pi}{3}\) rads to degrees

\[
\frac{2\pi}{3} \times \frac{180}{\pi} = 120^\circ
\]

2. Convert 2.1 rads to degrees

\[
2.1 \times \frac{180}{\pi} = 120.3^\circ
\]
Finding Arc Length

When angles are measured in degrees:

Length of Arc XY, $s = \frac{\theta}{360} \times 2\pi r$

When angles are measured in radians:

Length of Arc XY, $s = \frac{\theta}{2\pi} \times 2\pi r = r\theta$

1. Find the length of the arc AB.

 \[
 \text{Length of Arc } AB = r\theta \\
 = 5\left(\frac{2\pi}{3}\right) \\
 = \frac{10\pi}{3} \text{ cm}
 \]

2. Find the radius of the sector ABC.

 \[
 \text{Length of Arc } AB = r\theta \\
 16 = r\left(\frac{5\pi}{4}\right) \\
 r = \frac{64}{5\pi} \text{ cm}
 \]

3. An arc AB of a circle, centre O and radius r, subtends an angle of θ radians. Given that the perimeter of the sector AOB is P cm, express r in terms of P and θ.

 \[
 P = 2r + r\theta \\
 P = r(2 + \theta) \\
 r = \frac{P}{2 + \theta} \text{ cm}
 \]
Finding Area of Sector

When angles are measured in degrees:

Area of Sector $OXY, A = \frac{\theta^\circ}{360} \times \pi r^2$

When angles are measured in radians:

Area of Sector $OXY, A = \frac{\theta}{2\pi} \times \pi r^2$

$$= \frac{1}{2} r^2 \theta$$

1. Find the area of the sector ABC, where $\angle ABC = \frac{\pi}{3}$ and $r = 2$ cm.

$$\text{Area of Sector } ABC = \frac{1}{2} (2)^2 \left(\frac{\pi}{3} \right)$$

$$= \frac{2\pi}{3} \text{ cm}^2$$

2. Find the area of the sector ABC, where $\angle ABC = 60^\circ$ and $r = 8$ cm.

Remember to convert the angle to radians first!

$$\text{Area of Sector } ABC = \frac{1}{2} (8)^2 \left(\frac{\pi}{3} \right)$$

$$= \frac{32\pi}{3} \text{ cm}^2$$

Finding the Area of Segment

Area of segment = Area of sector – area of a triangle

Area of Segment $$= \frac{1}{2} r^2 \theta - \frac{1}{2} r^2 \sin \theta$$

$$= \frac{1}{2} r^2 (\theta - \sin \theta)$$
1. Find the area of the shaded segment.

\[
\text{Area of segment} = \frac{1}{2}r^2(\theta - \sin \theta)
\]
\[
= \frac{1}{2}(9)^2\left(\frac{\pi}{6} - \sin \frac{\pi}{6}\right)
\]
\[
= 0.95575...
\]
\[
\approx 0.956 \text{ cm}^2
\]

Exercise

For all questions, give all answers for \(\theta \) in radians.

Q1 The diagram shows part of a circle, centre \(O \) and radius 7 cm. \(\angle POQ \) is 1.2 radians. Find the area and perimeter of the shaded region.

\[O \quad \theta
\]
\[Q \quad P \quad O \]
\[7 \quad 1.2 \quad 9
\]

Q2 In a sketch of a parachute below, \(APB \) is an arc centre \(X \), radius 12 cm and \(\angle AXB = 0.8 \) radians. \(AQB \) is an arc centre \(Y \), radius 6 cm and \(\angle AYB = \theta \) radians. Calculate the
(i) value of \(\theta \),
(ii) area of the shaded region.

\[Q \quad A \quad B \]
\[\theta \quad \theta
\]
\[O \quad 6 \quad 12 \quad 0.8
\]

Q3 In the diagram, the sector \(OAB \) has centre \(O \), radius 9 cm and \(\angle AOB = \frac{\pi}{6} \) radians. \(OC \) bisects \(\angle AOB \) and \(M \) is the midpoint of \(OC \). An arc \(PQ \) with centre \(M \) is drawn.

(a) Find \(\angle OMP \).

(b) Calculate the perimeter of the shaded region.
Q4 The diagram below shows a semi-circular school field, centre O. During National Day, the uniform groups assemble in the shaded regions of the field. Given that the radius is 30 m, arc $AB = arc\ CD = arc\ EF = 15$ m, find $\angle BOE$ and hence, the perimeter of the shaded region.

Q5 The figure below shows two circles, centres X and Y, radii r_1 cm and r_2 cm which touches externally at P. Given that $\angle AXP = \frac{\pi}{4}$ radians, $\angle BYP = \frac{\pi}{3}$ radians and AB is parallel to XPY,

(a) (i) Express h in terms of r_1.
 (ii) Express h in terms of r_2.
 (iii) Hence, show that $\frac{r_1}{r_2} = \frac{1}{2\sqrt{6}}$.

(b) Given further that $r_1 = 6$,

 (i) find the perimeter of the shaded region
 (ii) find the area of the shaded region.

Q6 The diagram shows a sector $OPQRS$ with centre O. Arcs PQ, QR and RS have the same length. Given that $OP = 2$ m, $MN = 0.728$ m and

$\angle POS = \frac{2\pi}{3}$,

(a) show that $OM = 1.064$ m,
(b) find the perimeter of the shaded region,
(c) find the area of the shaded region.