Q1 Find the derivative of the following using first principles

- y = 5x 4(a)
- (b) $y = x^2 + 6$ (c) $y = 2x \frac{1}{x}$

Q2 Differentiate the following with respect to x

> $\frac{6x^3-2x^2+9}{5x^2}$ (a)

(b) $(2-3x^3)^4$

(c) $(1+\sqrt[3]{x})(1-\sqrt[3]{x})$

(d) $\frac{(3x-5)(x+1)}{x^2}$

(e) $4x^3(\sqrt{x}-1)$

 $(f) \qquad \sqrt{x^2 + 3x + 2}$

(g) $\frac{x-4}{2(x-2)^{\frac{3}{2}}}$

(h) $4\sqrt[3]{x} + \frac{7}{\sqrt{x}} - 5x^2$

(i) $\left(\frac{x^2+3}{x^2}\right)\left(2x^6+1\right)x$

(j) $\left(x+\frac{1}{x}\right)\sqrt{x+1}$

(k) $\sqrt{x(x^2+1)^2}$

(1) $(x^3+2)[(2x+1)^2+1]^3$

y(x+2) = x+1(m)

(n) $y(x+2)-(x^2-1)=0$

Calculate the x-coordinates of the points on the curve $y = \sqrt{\frac{1-x}{x^2+3}}$ for which $\frac{dy}{dx} = 0$. Q3

Given that $A = 4r^3 - 3r^2 - 18r + 5$, find $\frac{dA}{dr}$ and the range of values of r for which $\frac{dA}{dr} < 0$. Q4

Find the coordinates of the points where the tangent is horizontal for the given curve Q5 of $y = (2x-3)^4 (x-4)^5$.

A function is defined by $f(x) = (x+k)(kx+1)^3$, where k is a constant. **Q**6

- (a) If f'(1) = 0, find the values of k.
- (b) In addition, if k is an integer, find the value of f'(2).